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A B S T R A C T

The seasonal and interannual variability of the terrestrial carbon cycle is regulated by the interactions of climate
and ecosystem function. However, the key factors and processes determining the interannual variability of net
ecosystem productivity (NEP) in different biomes are far from clear. Here, we quantified yearly anomalies of
seasonal and annual NEP, net carbon uptake period (CUP), and the maximum daily NEP (NEPmax) in response to
climatic variables in 24 deciduous broadleaf forest (DBF), evergreen forest (EF), and grassland (GRA) ecosystems
that include at least eight years of eddy covariance observations. Over the 228 site-years studied, interannual
variations in NEP were mostly explained by anomalies of CUP and NEPmax. CUP was determined by spring and
autumn net carbon uptake phenology, which were sensitive to annual meteorological variability. Warmer spring
temperatures led to an earlier start of net carbon uptake activity and higher spring and annual NEP values in DBF
and EF, while warmer autumn temperatures in DBF, higher autumn radiation in EF, and more summer and
autumn precipitation in GRA resulted in a later ending date of net carbon uptake and associated higher autumn
and annual NEP. Anomalies in NEPmax s were determined by summer precipitation in DBF and GRA, and
explained more than 50% of variation in summer NEP anomalies for all the three biomes. Results demonstrate
the role of meteorological variability in controlling CUP and NEPmax, which in turn help describe the seasonal
and interannual variability of NEP.

1. Introduction

Climate controls the terrestrial carbon cycle by regulating plant
physiological processes, including phenology. Climate thus determines
both ecosystem carbon uptake capacity as well as the length of the
carbon uptake period, which are important determinants of ecosystem

carbon sequestration (Falge et al., 2002b; Gu et al., 2009; Xia et al.,
2015; Zhou et al., 2016). It is far from clear how climatic or
meteorological changes impact net ecosystem production (NEP) by
changing carbon uptake phenology and physiology, given that models
are largely unable to simulate the interaction between climate and
ecosystem carbon dynamics to date (IPCC, 2013).
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Previous studies on the relationship between carbon uptake phenol-
ogy and NEP primarily focus on growing season length (GSL). A longer
GSL due to climate warming (Delpierre et al., 2015; Linderholm, 2006;
Peñuelas and Filella, 2001) usually stimulates NEP (Baldocchi, 2008;
Baldocchi and Wilson, 2001; Churkina et al., 2005; Dragoni et al., 2011;
Richardson et al., 2013). Yet other studies have found no relationship
between GSL and NEP (Dunn et al., 2007), or lower NEP with longer
GSL (Hu et al., 2010b; Piao et al., 2007; Sacks et al., 2007). The reasons
for this disparity are twofold; gross ecosystem productivity may be
offset by concurrent increases in ecosystem respiration as NEP is the
difference between the two, and longer GSLs may increase the like-
lihood of drought limitations to productivity.

With the advantage of quasi-continuous measurements of the net
CO2 exchange by the eddy covariance method, strong relationships
between net carbon uptake period (CUP) and annual NEP have been
characterized (Baldocchi et al., 2001; Baldocchi et al., 2005;
Richardson et al., 2010; Richardson et al., 2013; Wu and Chen, 2013;
Wu et al., 2013). Overall, annual NEP is more strongly correlated with
CUP than GSL (Piao et al., 2007; White and Nemani, 2003; Wu et al.,
2013). While climate controls on GSL have been well studied
(Chmielewski and Rötzer, 2001; Delpierre et al., 2015; Matsumoto
et al., 2003; Richardson et al., 2013), our understanding of climate
controls over CUP and thus NEP across different ecosystems is still
limited.

In addition to the CUP, the maximum daily ecosystem NEP (NEPmax,
Fig. 1A) is another strong predictor of annual NEP, especially in
temperate and boreal ecosystems that have obvious seasonal dynamics
(Falge et al., 2002b; Xia et al., 2015; Zhou et al., 2016). With the same
CUP, ecosystems that have a higher NEPmax tend to have larger annual
NEP (Fig. 1D) (Churkina et al., 2005). Although a longer CUP may
increase annual NEP, associated warmer and drier summers may
suppress summer NEPmax, potentially offsetting any annual NEP
increase (e.g. Fig. 1E) (Angert et al., 2005; Ciais et al., 2005; Cleland
et al., 2007). Moreover, a longer CUP may decrease annual NEP
because an earlier onset of the growing season may result from a
shallow snowpack or increased transpiration, leaving less available
water in the soil in summer and limiting plant growth later in the
growing season (Hu et al., 2010a; Kljun et al., 2006; Sacks et al., 2007).

Niemand et al. (2005) linked phenology observations to flux measure-
ments in a Norway spruce forest and found that earlier spring
phenology correlated well with increased NEP only when the drought
year of 2003 was excluded, suggesting that water availability influences
the relationship between CUP and annual NEP. These results indicate
that the effects of summer water limitation on NEPmax may potentially
offset positive spring warming influences on spring NEP, leading to
smaller changes in annual NEP than otherwise expected (Fig. 1E). In
addition, autumn warming may also advance the ending of carbon
uptake and decrease autumn NEP, resulting in a small change in annual
NEP in response to climate warming (Fig. 1F). We tested the hypothesis
that, by separating annual NEP variability into CUP and NEPmax, we can
better disentangle how meteorological drivers impact NEP variability in
deciduous broadleaf forests (DBF), evergreen forests (EF), and grass-
lands (GRA) that experience pronounced seasonality in temperate and
boreal climate zones.

In this study, we analyzed eddy covariance-measured CO2 flux and
micrometeorological variables from 24 flux tower sites that have long-
term (multi-year) quasi-continuous measurements. The specific ques-
tions addressed in this study include: (1) how are CUP and NEPmax

related to annual NEP in different biomes; (2) what are the climate
factors that determine NEPmax and the beginning (BDOY) and end
(EDOY) of the CUP; and (3) how are seasonal NEP anomalies related to
annual NEP anomalies?

2. Data and methods

2.1. Site selection and data processing

Surface-atmosphere CO2 flux and micrometeorological data used in
this analysis were downloaded from standardized files of the FLUXNET
LaThuille database released in 2007 (Baldocchi, 2008; Baldocchi et al.,
2001). The data have been quality-controlled and gap-filled by
consistent methods (Moffat et al., 2007; Papale et al., 2006;
Reichstein et al., 2005). From the available 253 sites, we identified
and examined temperate and boreal ecosystems (38–62°N, −125 to
24°E; Table A1) that have clear seasonal dynamics. We only chose sites
that have eight or more years of data for a total of 24 sites with 228 site-

Fig. 1. Hypothesized changes in the regulation of annual NEP by net carbon uptake period (CUP) and the maximum daily net ecosystem productivity (NEPmax), and their roles in
regulating annual NEP changes. Panel A defines the terminology used throughout the manuscript. Red lines in subsequent panels represent the change in a hypothetical warmer year
versus the mean seasonal pattern in black. Panels (B) and (C) represent the phenological regulations by advancing net carbon sink beginning day (BDOY) or by delaying net carbon sink
ending day (EDOY); (D) represents a change in NEPmax; (E) represents the larger spring NEP with an advancing BDOY but smaller summer NEP by decreasing NEPmax; and (F) represents
larger spring NEP by early beginning of BDOY, but smaller autumn NEP with earlier EDOY. We only showed the representative scenarios rather than all possible interactions between
NEPmax, BDOY and EDOY.
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years to investigate the interannual variability of climate and CUP and
NEPmax, as well as seasonal and annual NEP (Table A1). Daily data for
each site were used to calculate the seasonal and annual values of
incoming solar global radiation (Rg), air temperature (Ta), precipitation
(PPT), and daily CO2 fluxes (i.e., NEP, also called the net ecosystem
exchange, NEE). These sites were divided into three groups based on
International Geosphere-Biosphere Programme (IGBP) land cover clas-
sifications: deciduous broadleaf forests (DBF), evergreen forests (EF),
and grasslands (GRA).

For each year, we calculated the seasonal and annual mean values of
T, PPT, Rg, and NEP. The whole year was separated into the
climatological seasons of winter (December–February), spring
(March–May), summer (June–August), and autumn
(September–November) in order to study seasonal changes in NEP in
response to changes in CUP and NEPmax. When the missing daily data
exceeded 10% of the entire season (or year), the seasonal (or yearly)
value was indicated as missing. On average, for the 24 sites, 8% of the
years were rejected due to insufficient data. The years rejected varied
from 7% (US-Ha1) to 45% (IT-Col) among sites.

2.2. Definition and analysis

We used a 10-day moving average to determine the beginning
(BDOY) and ending (EDOY) day of positive ecosystem NEP for each
year for each site (Fig. 1A, Table A2). Consistently, BDOY occurred in
spring and EDOY appears in autumn at all the sites. We defined the net
carbon uptake period (CUP) as the number of days between the BDOY
and EDOY (Fig. 1A). Daily ecosystem carbon uptake exceeds carbon
release during the CUP. CUP is related to, but need not be identical to,

GSL. For example, the beginning of CUP may start later than leaf onset
when the leaves photosynthesize at a rate that outweighs ecosystem
respiration. The CUP ends when ecosystem respiration is higher than
photosynthesis although plant growth and CO2 uptake may continue.
GSL in most cases will be longer than CUP because the balance between
total ecosystem respiration and photosynthesis determines CUP
(Churkina et al., 2005). The maximum daily NEP (NEPmax) is defined
as the maximum value of daily NEP, which was derived from the
moving average curves of NEP seasonal dynamics (Fig. 1A). Interannual
variation as a yearly anomaly was calculated for each site-year for each
variable.

2.3. Data analysis

To examine the relationships between climate anomalies and the
anomalies of BDOY, EDOY, and NEPmax, as well as the anomalies in
seasonal and annual NEP, we analyzed the data using simple linear
regression. For testing the inequality of regression slopes among
different vegetation types, the slopes between BDOY and EDOY
anomalies, and seasonal or annual NEP anomalies for different seasons,
we calculated t* using t* b b s s= ( − )/ ( + )1 2 1

2
2
2 , where b1 and b2 are

regression slopes, and s1 and s2 are the standard errors of regression
slopes for the vegetation types or different seasons. The null hypothesis
is that the slopes b1 and b2 are not significantly different at α=0.05. We
also used structural equation models to partition the total effect of
variables on annual NEP into direct and indirect effects (Schumacker
and Lomax, 2004; Vargas et al., 2010). A path model was developed to
relate the anomalies of NEP to the anomalies of CUP and NEPmax, as
well as the anomalies of seasonal climate factors in different ecosys-
tems. The model was fitted using the ‘lavaan’ package (Rosseel, 2012)
in R3.0.2 for Windows.

3. Results

3.1. CUP and NEPmax in controlling NEP

Across all the site-years, annual NEP anomalies were positively
correlated with anomalies of CUP and NEPmax across all three ecosys-
tem types (P < 0.001, Fig. 2A). The slope between CUP and NEP was
significantly higher in DBF (5.5 g C m−2 per day) and GRA
(3.6 g C m−2 per day) than in EF (1.9 g C m−2 per day, Fig. 2A). Across
all site-years, annual NEP increased by 107 g C m−2 per unit increase of
NEPmax (g C m−2 d−1) (Fig. 2B). The relationship between NEPmax and
NEP was similar between DBF (123.2 g C m−2) and EF (112.9 g C m−2)
per unit increase of NEPmax (g C m−2 d−1), and both were higher than
that in GRA (56.3 g C m−2) (Fig. 2B). NEPmax and CUP in combination
explained 73, 54, 63% of the variation in annual NEP anomalies in DBF,
EF, and GRA, respectively, as quantified using the structural equation
models (Fig. A1).

3.2. Spring phenology and NEP

BDOY was significantly correlated with spring temperature in DBF
and EF (Fig. 3A), but not with spring precipitation or radiation in any
biome (P > 0.05). BDOY advanced by 2.6 and 3.7 days per degree
increase of spring temperature for DBF and EF, respectively (Fig. 3A).
Early BDOY led to an increase in spring NEP in the three biomes, and
annual NEP in DBF and EF (Fig. 3B and C). For example, spring NEP
increased by 4.0, 0.8 and 1.6 g C m−2 per day advance of BDOY for
DBF, EF, and GRA, respectively (Fig. 3B), while annual NEP increased
by 6.6 and 2.1 g C m−2 per day advance of BDOY for DBF and EF,
respectively (Fig. 3C). All the spring climate factors in combination
explained 37% and 16% of the variation in BDOY in DBF and EF,
respectively, but explained only 3% in GRA (Fig. A1).

Fig. 2. (A) The changes in annual NEP anomalies with the anomalies of net carbon uptake
period (CUP), and (B) the anomalies of maximum daily net ecosystem productivity
(NEPmax) in temperate and boreal deciduous broadleaf (DBF), evergreen forest (EF) and
grassland (GRA) ecosystems. The numbers in the legends are r values; all are significant at
P < 0.001.

Z. Fu et al. Agricultural and Forest Meteorology 243 (2017) 9–18

11



3.3. Autumn phenology and NEP

EDOY anomalies were positively correlated with autumn tempera-
ture anomalies in DBF (P < 0.001, Fig. 4A), with autumn radiation
anomalies in EF (P < 0.01, Fig. 4B), and with summer and autumn
precipitation anomalies in GRA (P < 0.01, Fig. 4C). EDOY was later by
4.1 days per degree increase of autumn temperature in DBF (Fig. 4A),
by 8 days per 100 MJ m−2 increase of radiation in EF, and by 2.3 days
per 10 mm increase of summer or autumn precipitation in GRA. Later
EDOY led to an increase of autumn and annual NEP in the three biomes
(Fig. 4D, E). Autumn NEP increased by 2.8, 0.8 and 0.5 g C m−2 per
extra day of EDOY for DBF, EF and GRA, respectively (Fig. 4D), while
annual NEP increased by 6.2, 1.6 and 2.6 g C m−2 per day, respectively
(Fig. 4E). The autumn climate factors in combination explained 21%
and 48% of the variation in EDOY in DBF and GRA, respectively, but
explained only 10% in EF (Fig. A1).

3.4. NEPmax and NEP

NEPmax had no significant relationship with summer temperature or
radiation in any biome (P > 0.05), but was negatively correlated with
summer precipitation anomalies in DBF and positively correlated with
summer precipitation anomalies in GRA (Fig. 5A). NEPmax anomalies
were related to summer NEP anomalies for all the three biomes with
similar slopes (Fig. 5B). Summer climate factors in combination
explained most (62%) of the variation of NEPmax in GRA but explained
only 12% and 5% in DBF and EF (Fig. A1).

3.5. Relationships among seasonal NEP

Spring NEP anomalies were positively correlated with the summer,
autumn, and winter NEP anomalies in DBF and EF, and the slope of this
relationship did not differ between biomes (Fig. 6A–C). Summer NEP
anomalies were correlated with autumn NEP anomalies in DBF and EF,
and with winter NEP anomalies in EF (Fig. 6D, E). Autumn NEP
anomalies were positively correlated with winter NEP anomalies only
in EF (Fig. 6F). There were no significant relationships between
seasonal NEP anomalies in GRA.

4. Discussion

We first discuss relationships between meteorological variables and
the CUP, followed by a discussion of the relationships between CUP,
NEPmax, and NEP on the annual and seasonal bases.

4.1. The relationship between climate and the beginning of the net carbon
uptake period

Our results show that interannual variability in ecosystem net
carbon uptake phenology was sensitive to climate factors. Spring
temperature drives the variability in BDOY, with an average advance
of 2.6 − 4.5 days °C−1 in warmer years (Fig. 3). The advancement of
vegetation phenology in response to temperature is well documented in
previous studies (Jeong et al., 2011; Julien and Sobrino, 2009; Keenan
et al., 2014; Menzel and Fabian, 1999; Menzel et al., 2006; Piao et al.,
2006; Schwartz et al., 2006). In an analysis of direct observations of
plant phenology over Europe for 1971–2000, Menzel et al. (2006)
detected an average advance of 0.25 days year−1 in spring onset. Using
satellite-measured normalized difference vegetation index, Jeong et al.
(2011) demonstrated that the start of the growing season advanced by
5.2 days during 1982–1999 over the Northern Hemisphere due to
observed warming. Most of these previous studies used satellite-derived
data to directly infer vegetation phenological parameters (Jeong et al.,
2011; Julien and Sobrino, 2009).

Vegetation phenology may not necessarily reflect ecosystem net
carbon uptake phenology (Bauerle et al., 2012; White and Nemani,
2003), but we found that BDOY responded to temperature anomalies in
DBF and EF (Fig. 3). The phenology of DBF emerged to be more
sensitive to the spring air temperature anomalies when compared with
EF and GRA, likely because of the fundamental differences in pheno-
logical strategies among the biomes. For example, leaf flush in
deciduous trees can occur rapidly compared to the reestablishment of
photosynthetic mechanisms in conifers (Gu et al., 2008; Monson et al.,
2005; Richardson et al., 2010), resulting in a smaller sensitivity of
BDOY in response to a warmer spring in EF than in other biomes.

4.2. The relationship between climate and the end of the net carbon uptake
period

Previous studies examining autumn phenology often focus on the
impact of temperature on autumn phenology of vegetation. For
example, Keenan et al. (2014) reported that warmer autumn tempera-
tures lead to later senescence. The sensitivity of autumn phenology to a

Fig. 3. (A) Spring phenology (net carbon sink beginning day, BDOY) in response to spring
temperature change, and its contribution to spring (B) and annual (C) NEP anomalies in
temperate and boreal deciduous broadleaf (DBF), evergreen forest (EF) and grassland
(GRA) ecosystems. The numbers in the legends are r values; all are significant at
P < 0.01.
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change from the mean temperature was similar across forest types, with
a 1 °C difference from the mean temperature leading to a 1.8 day
change in autumn senescence for DBF and a 6.3 day change in EF
(Keenan et al., 2014). Using satellite NDVI data, Stockli and Vidale
(2004) reported a delay of senescence in autumn by an average of
0.42 days year−1 over Europe with observed climate warming, while
Tucker et al. (2001) found an earlier onset of autumn in Eurasia in a
warmer environment. The above-mentioned results suggest large
uncertainties in estimating the key climate factors for vegetation
phenology changes in autumn (Menzel et al., 2006).

Vegetation phenology does not necessarily reflect net carbon uptake
phenology, and we found that the variability of EDOY was determined
by different environmental factors in different biomes. EDOY occurred
later with higher autumn temperature in DBF, higher radiation in EF,

and more summer and autumn precipitation in GRA (Fig. 5). Our results
indicate that precipitation and radiation, in addition to temperature,
play important roles in regulating the EDOY in temperate and boreal
ecosystems. More precipitation could improve soil water supply that
enables longer carbon gain into autumn, while higher radiation may
enable more net carbon gain as days are getting shorter and radiation is
often limiting in autumn (Niu et al., 2011).

4.3. The joint roles of CUP and NEPmax in regulating NEP

The interannual variation in NEP was attributed to yearly anomalies
in CUP and NEPmax (Fig. 2), which in combination explained 54–73% of
changes in annual NEP in the three biomes (Fig. A1). In line with our
findings, Xia et al. (2015) and Zhou et al. (2016) recently proposed that

Fig. 4. (A–C) Significant relationships between meteorological variables and the day at which ecosystem net CO2 uptake ends (EDOY) in temperate and boreal deciduous broadleaf (DBF),
evergreen forest (EF) and grassland (GRA) ecosystems. The contributions of EDOY anomalies to autumn (D) and annual (E) NEP anomalies. The numbers in the legends are r values; all are
significant at P < 0.05).
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more than 90% of annual gross primary productivity (GPP) can be
explained by the combination of growing season length and the
maximum daily GPP in temperate, boreal, and arctic ecosystems. These
findings highlighted the important role of GPPmax and phenology in
controlling production and emphasize the importance of extending such
an analysis to account for NEP in addition to GPP.

We found that an early onset of net carbon uptake enhanced spring
and annual NEP (Fig. 3), while a delay of EDOY increased autumn and
annual NEP (Fig. 4), indicating the importance of CUP in regulating
carbon sequestration in temperate and boreal ecosystems. The observed
link between CUP and annual NEP in temperate and boreal ecosystems
are consistent with the results of Baldocchi et al. (2001), Baldocchi
(2008), and Wu and Chen (2013). Compared to previous studies, this
study emphasized different sensitivities between climate and NEP
among biomes and between seasons. Spring, autumn, and annual NEP
changed more in DBF than in EF and GRA with the same change in
BDOY or EDOY. This suggests a higher sensitivity of NEP to phenology
changes in DBF than other biomes. Some previous studies also reported
that ecosystem productivity in DBF was more sensitive than EF to
carbon uptake period (Churkina et al., 2005; Wu et al., 2013). Using
flux data, Wu et al. (2013) quantified that a one-day increase in CUP led
to a 3.3 and 1.5 g C m2 y−1 increase in annual NEP in DBF and EF,
respectively. These results indicate that DBF tends to have a higher
productivity during the growing season than EF due to the fundamental
differences in physiological strategies between the two biomes (Barr
et al., 2009; Falge et al., 2002a; Givnish, 2002; Richardson et al., 2009).
Deciduous broadleaf tree species evolved millions of years after conifers
and are much more efficient in assimilation per unit leaf surface—the

luxury of shedding leaves in winter. DBF are well known for having a
higher maximum photosynthetic capacity, which is be offset by a
shorter vegetation period (Roser et al., 2002; Schulze et al., 1977). The
observed differences between EF and DBF in phenology-productivity
relationships have ecological implications, especially in the light of
climate change effects on phenology, as phenology models should
predict ecosystem response to climate change in different ways for
different biomes.

In addition to CUP, NEPmax also contributed to the interannual
variability of ecosystem NEP, especially during summer (Fig. 5). Our
results showed that summer precipitation was related to NEPmax in GRA
and DBF, indicating that increases in annual NEP due to increases in
CUP may be offset by the influence of summer precipitation on NEPmax.
These results suggest that CUP and NEPmax may play different roles in
regulating the variability of annual NEP, depending on their interac-
tions.

4.4. Seasonal NEP contributions to annual NEP anomalies

NEP anomalies in different seasons were related to annual NEP
anomalies as expected (Fig. 6). Spring phenology was more strongly
related to spring NEP than to annual NEP, suggesting that annual fluxes
are much more variable because they are affected by weather events in
other seasons. For example, in grasslands, although early onset of BDOY
led to an increase of spring NEP, annual NEP showed no relationship
with BDOY anomalies (Fig. 3). This is possibly due to the limitations of
summer precipitation, which led to lower summer NEP (Fig. 1E). The
insignificant relationship between spring NEP anomalies and NEP
anomalies in other seasons in GRA (Fig. 6) also indicates that the
depression of NEP in other seasons may exceed the legacy effects of
spring NEP on later seasons. DBF and EF showed strong lag effects of
spring NEP on the summer/autumn NEP (Fig. 6), suggesting that spring
phenology plays an important role in determining the seasonal and
annual NEP in these two biomes. Flux anomalies in other seasons may
also partly contribute additional variability to the annual NEP.

The various relationships between NEP anomalies in different
seasons indicate that the interannual variability of NEP can only be
better understood by fully addressing the different responses of
seasonal NEP to climate and meteorological variability. If we connect
annual NEP anomalies to climate factors only at annual time scales, we
might miss many significant relationships between seasonal NEP and
climate factors at the ecosystem scale. Temperature is the main factor
controlling the interannual variability of terrestrial NEP at the global
scale (Jung et al., 2017; Wang et al., 2013; Wang et al., 2014), as the
ecosystem and regional effects of precipitation compensate for each
other (Ahlström et al., 2015; Poulter et al., 2014; Zeng et al., 2005).
Understanding the links between ecosystem and global scale responses
to climate variability is an important avenue of future research, and we
must extend our understanding of the controls over NEP to tropical and
subtropical ecosystems to do so from the “bottom up” using ecosystem-
scale observations.

5. Conclusions

By analyzing eddy covariance CO2 fluxes from 24 flux tower sites,
this study examined the responses of CUP and NEPmax to climate factors
in temperate and boreal ecosystems with pronounced seasonality.
Spring temperature was the primary controlling factor for BDOY, but
the controlling factors for EDOY were different among biomes. Summer
precipitation was the main factor effecting NEPmax for DBF and GRA.
Because these critical phenology and physiology-relevant variables
were controlled by different seasonal environmental factors, there
existed complex relationships among NEP anomalies in different
seasons. This study provides a fundamental understanding of the role
of ecosystem level phenology and physiology in regulating ecosystem
carbon sequestration across temperate and boreal ecosystems, and

Fig. 5. (A) The relationship between summer precipitation (PPT) and maximum daily net
ecosystem productivity (NEPmax) in temperate and boreal deciduous broadleaf (DBF) and
grassland (GRA) ecosystems. (B) The contribution of NEPmax anomalies to summer NEP
anomalies at all three study biomes. The numbers in the legends are r values; all are
significant at P < 0.05.
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future studies should extend our understanding to regions with less-
pronounced seasonality to improve our understanding of the relation-
ship between climate and ecosystem carbon exchange.
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Appendix A

See Tables A1 and A2 and Fig. A1.

Table A2
The mean and variability of the beginning date (BDOY) and ending date (EDOY) of net carbon uptake for each study site during the study period.

Sites Vegetation BDOY EDOY

Mean SD Mean SD

CA-Oas DBF 135.6 10.8 251.4 4.2
DE-Hai DBF 116.0 4.5 280.3 5.6
DK-Sor DBF 108.7 6.4 262.8 8.3
FR-Hes DBF 18.4 23.0 337.3 19.5
IT-Col DBF 53.3 12.7 322.3 11.5
US-MMS DBF 31.3 9.9 277.8 21.3
IT-Ro1 DBF 30.7 21.6 306.4 31.7
US-Ha1 DBF 77.2 5.1 294.0 18.9
US-UMB DBF 110.0 8.1 285.9 5.1
BE-Bra EF 91.3 16.2 267.7 7.7
BE-Vie EF 45.9 16.3 292.6 10.9
CA-Ca1 EF 12.9 6.4 290.8 54.1
CA-Man EF 98.8 17.8 247.6 16.7
DE-Tha EF 42.0 17.1 314.7 13.4
FI-Hyy EF 85.8 10.1 260.8 11.4
FR-Pue EF 108.1 4.3 277.9 16.0
IT-Ren EF 111.4 12.7 278.9 12.8
US-Blo EF 91.3 11.6 269.0 35.7
NL-Loo EF 133.2 5.3 274.5 4.1
US-Ho1 EF 109.6 3.7 279.0 5.9
US-NR1 EF 132.3 7.5 267.4 5.3
AT-Neu GRA 89.7 4.5 255.1 4.0
CA-Let GRA 110.7 13.8 219.2 35.3
US-Var GRA 16.7 15.8 134.4 7.1

Table A1
Site characteristics, climatic index, and studied period of eddy covariance research sites in this analysis.

Site name Veg1 Lat* Lon** PPT2(mm) Ta (°C) Period References

AT-Neu GRA 47.12 11.32 1040.4 6.3 2002–2009 (Wohlfahrt et al., 2008)
BE-Bra EF 51.31 4.52 742.7 10.0 2000–2009 (Gielen et al., 2010)
BE-Vie EF 50.31 6.00 1065.1 7.4 1996–2007 (Aubinet et al., 2001)
CA-Ca1 EF 49.87 −125.33 1369.2 9.9 1998–2005 (Humphreys et al., 2006)
CA-Let GRA 49.71 −112.94 349.9 6.2 1998–2005 (Flanagan et al., 2002)
CA-Man EF 55.88 −98.48 515 −1.2 1995–2003 (Dunn et al., 2007)
CA-Oas DBF 53.63 −106.2 428.5 0.3 1997–2005 (Black et al., 2000)
DE-Hai DBF 51.08 10.45 780.3 7.2 2000–2007 (Knohl et al., 2003)
DE-Tha EF 50.96 13.57 643.1 8.1 1997–2008 (Grunwald and Bernhofer, 2007)
DK-Sor DBF 55.49 11.65 952 8.7 1998–2009 (Pilegaard et al., 2003)
FI-Hyy EF 61.85 24.29 620.2 2.2 1997–2008 (Suni et al., 2003)
FR-Pue EF 43.74 3.59 734.5 12.9 2001–2008 (Rambal et al., 2004)
FR-Hes DBF 48.67 7.06 793.3 9.2 1997–2008 (Granier et al., 2000)
IT-Ren EF 46.59 11.43 964.7 6.2 2001–2009 (Montagnani et al., 2009)
IT-Col DBF 41.85 13.59 970.9 7.3 1997–2007 (Van Dijk and Dolman, 2004)
US-Blo EF 38.9 −120.63 1630 12.5 1999–2006 (Goldstein et al., 2000)
US-MMS DBF 39.32 −86.41 1031.6 10.8 1999–2006 (Schmid et al., 2000)
IT-Ro1 DBF 42.41 11.93 763.7 15.3 2001–2008 (Rey et al., 2002)
NL-Loo EF 52.17 5.74 786.2 9.4 1997–2009 (Dolman et al., 2002)
US-Ha1 DBF 43.54 −72.17 1071 6.6 1993–2006 (Urbanski et al., 2007)
US-Ho1 EF 45.2 −68.74 1070.3 5.3 1996–2004 (Hollinger et al., 2004)
US-UMB DBF 45.56 −84.71 803.4 5.8 1999–2006 (Gough et al., 2008)
US-NR1 EF 40.03 −105.54 595.2 0.4 1999–2007 (Monson et al., 2002)
US-Var GRA 38.41 −120.95 543.9 15.9 2001–2008 (Xu and Baldocchi, 2004)

*Positive value indicates north latitude. **Negative value indicates west longitude. 1vegetation, 2precipitation. DBF: deciduous broadleaf forest; EF: evergreen forest; GRA: grassland.
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